Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 692: 108547, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32828796

RESUMO

Anthrax lethal factor (LF) is a critical component of the anthrax toxin, and functions intracellularly as a zinc-dependent endopeptidase targeting proteins involved in maintaining critical host signaling pathways. To reach the cytoplasm, LF requires to be unfolded and guided through the narrow protective antigen pore in a pH-dependent process. The current study sought to address the question as to whether LF is capable of retaining its metal ion when exposed to a low-pH environment (similar to that found in late endosomes) and an unfolding stress (induced by urea). Using a combination of tryptophan fluorescence spectroscopy and chelation studies, we show that a decrease in the pH value (from 7.0 to 5.0) leads to a pronounced shift in the onset of structural alterations in LF to lower urea concentrations. More importantly, the enzyme was found to retain its Zn2+ ion beyond the unfolding transitions monitored by Trp fluorescence, a finding indicative of tight metal binding to LF in a non-native state. In addition, an analysis of red-edge excitation shift (REES) spectra suggests the protein to maintain residual structure (a feature necessary for metal binding) even at very high denaturant concentrations. Furthermore, studies using the chromophoric chelator 4-(2-pyridylazo)resorcinol (PAR) revealed LF's Zn2+ ion to become accessible to complexation at urea concentrations in between those required to cause structural changes and metal dissociation. This phenomenon likely originates from the conversion of a PAR-inaccessible (closed) to a PAR-accessible (open) state of LF at intermediate denaturant concentrations.


Assuntos
Antígenos de Bactérias/química , Bacillus anthracis/química , Toxinas Bacterianas/química , Quelantes/química , Zinco/química , Concentração de Íons de Hidrogênio , Desnaturação Proteica
2.
J Inorg Biochem ; 182: 1-8, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29407865

RESUMO

Anthrax lethal factor (LF) is a zinc-dependent endopeptidase involved in the cleavage of proteins critical to the maintenance of host signaling pathways during anthrax infections. Although zinc is typically regarded as the native metal ion in vivo, LF is highly tolerant to metal substitution, with its replacement by copper yielding an enzyme (CuLF) 4.5-fold more active than the native zinc protein (at pH 7). The current study demonstrates that by careful choice of the buffer, ionic strength, pH and substrate, the activity ratio of CuLF and native LF can be increased to >40-fold. Using a fluorogenic LF substrate, such optimized assay conditions can be exploited to detect LF concentrations as low as 2 pM. In contrast to the zinc form, CuLF was found to be inhibited by bromide and iodide ions, to be resistant to metal loss under acidic conditions, and to display a sharp pH dependence with significantly shifted alkaline limb towards more acidic conditions. The alkaline limb in the enzyme's pH profile is suggested to originate from changes in the protonation state of the metal-bound water molecule which serves as the nucleophile in the catalytic mechanism. Based on these observations and studies on other zinc proteases, a minimal mechanism for LF is proposed.


Assuntos
Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Peptídeo Hidrolases/metabolismo , Antígenos de Bactérias/química , Toxinas Bacterianas/química , Brometos/metabolismo , Cobre/metabolismo , Concentração de Íons de Hidrogênio , Iodetos/metabolismo , Concentração Osmolar , Peptídeo Hidrolases/química , Zinco/metabolismo
3.
Biochem Biophys Rep ; 1: 68-77, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-29124135

RESUMO

Anthrax lethal factor (LF) is a zinc-dependent endopeptidase which, through a process facilitated by protective antigen, translocates to the host cell cytosol in a partially unfolded state. In the current report, the influence of urea and guanidine hydrochloride (GdnHCl) on LF׳s catalytic function, fold and metal binding was assessed at neutral pH. Both urea and GdnHCl were found to inhibit LF prior to the onset of unfolding, with the inhibition by the latter denaturant being a consequence of its ionic strength. With the exception of demetallated LF (apoLF) in urea, unfolding, as monitored by tryptophan fluorescence spectroscopy, was found to follow a two-state (native to unfolded) mechanism. Analysis of the metal status of LF with 4-(2-pyridylazoresorcinol) (PAR) following urea or GdnHCl exposure suggests the enzyme to be capable of maintaining its metal ion passed the observed unfolding transition in a chelator-inaccessible form. Although an increase in the concentration of the denaturants eventually allowed the chelator access to the protein׳s zinc ion, such process is not correlated with the release of the metal ion. Indeed, significant dissociation of the zinc ion from LF was not observed even at 6 M urea, and only high concentrations of GdnHCl (>3 M) were capable of inducing the release of the metal ion from the protein. Hence, the current study demonstrates not only the propensity of LF to tightly bind its zinc ion beyond the spectroscopically determined unfolding transition, but also the utility of PAR as a structural probe.

4.
J Inorg Biochem ; 140: 12-22, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25042732

RESUMO

Anthrax lethal factor (LF) is a zinc-dependent metalloendopeptidase and a member of the gluzincin family. The current report demonstrates a high metal substitution tolerance of LF atypical of gluzincins and other zinc-dependent metalloproteases. Mn(2+), Co(2+), Ni(2+), Cu(2+) and Cd(2+) were found to reactivate the apoprotein of LF to a level either comparable to or significantly higher than that noted for the native zinc enzyme. The most active form of LF was obtained with Cu(2+), a surprising observation since most Cu(2+)-substituted zinc proteases display very low activity. Cu(2+)-substituted LF (CuLF), prepared by direct exchange and by apoprotein reconstitution methodologies, displayed a several-fold higher catalytic competence towards chromogenic and fluorogenic LF substrates than native LF. CuLF bound Cu(2+) tightly with a dissociation constant in the femtomolar range. The electron paramagnetic resonance spectrum of CuLF revealed the protein-bound metal ion to be coordinated to two nitrogen donor atoms, suggesting that Cu(2+) binds to both active site histidine residues. While ZnLF and CuLF (prepared by direct exchange) were capable of killing RAW 264.7 murine macrophage-like cells, apoLF and all metal-reconstituted apoprotein preparations failed to elicit a cytotoxic response. Competition experiments using apoLF/ZnLF mixtures demonstrated the propensity of apoLF to relieve ZnLF-induced cell death, suggesting that both protein forms can compete with each other for binding to protective antigen. The lack of cytotoxicity of apoLF and its metal-reconstituted variants likely originates from structural perturbations in these proteins which might prevent their translocation into the cytoplasm.


Assuntos
Antígenos de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Cobre/química , Metais/química , Animais , Antígenos de Bactérias/química , Toxinas Bacterianas/química , Linhagem Celular , Espectroscopia de Ressonância de Spin Eletrônica , Macrófagos/efeitos dos fármacos , Camundongos
5.
Biochem Biophys Res Commun ; 416(1-2): 106-10, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22093822

RESUMO

Anthrax lethal factor (LF) is a zinc-dependent endopeptidase involved in the cleavage of mitogen-activated protein kinase kinases near their N-termini. The current report concerns the preparation of cobalt-substituted LF (CoLF) and its characterization by electronic spectroscopy. Two strategies to produce CoLF were explored, including (i) a bio-assimilation approach involving the cultivation of LF-expressing Bacillus megaterium cells in the presence of CoCl(2), and (ii) direct exchange by treatment of zinc-LF with CoCl(2). Independent of the method employed, the protein was found to contain one Co(2+) per LF molecule, and was shown to be twice as active as its native zinc counterpart. The electronic spectrum of CoLF suggests the Co(2+) ion to be five-coordinate, an observation similar to that reported for other Co(2+)-substituted gluzincins, but distinct from that documented for the crystal structure of native LF. Furthermore, spectroscopic studies following the exposure of CoLF to thioglycolic acid (TGA) revealed a sequential mechanism of metal removal from LF, which likely involves the formation of an enzyme: Co(2+):TGA ternary complex prior to demetallation of the active site. CoLF reported herein constitutes the first spectroscopic probe of LF's active site, which may be utilized in future studies to gain further insight into the enzyme's mechanism and inhibitor interactions.


Assuntos
Antígenos de Bactérias/química , Toxinas Bacterianas/química , Cobalto/química , Metaloendopeptidases/química , Bacillus megaterium/enzimologia , Bacillus megaterium/genética , Bacillus megaterium/crescimento & desenvolvimento , Domínio Catalítico , Técnicas de Cultura de Células , Cobalto/metabolismo , Cinética , Espectrofotometria , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...